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Introduction

Introduction

Consider a classic two-group completely randomized design in which one group gets the
treatment and the other group is a control.
We saw earlier in the course how such a design can be handled by a 2-sample,
independent sample t-test.
We also saw that, if we code treatment condition as a binary 0-1 variable, the design is
also handled easily as a linear regression model.
One advantage of the linear regression approach is that it is easy to expand the design to
include continuous covariates.
Another, more esoteric advantage, is that it leads us to think of the design, and its
statistical test, in terms of an underlying regression model.
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Revisiting the Voucher Experiment

Revisiting the Voucher Experiment

Murnane and Willett(Chapter 4, Table 4.1) analyzed an outcome of the NYSP evaluation
study.
In this study, students were divided into two groups. The experimental group was
randomly selected (from a larger group of volunteer applicants) to receive a tuition
voucher, while the control group did not receive a voucher.
The key experimental question was whether receipt of a voucher affected achievement as
measured by a POST_ACH variable.
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Revisiting the Voucher Experiment

Revisiting the Voucher Experiment

If we “dummy-code” a VOUCHER variable as a binary 0-1 variable, we can process the data
as a linear regression model

POST ACHi = β0 + β1VOUCHERi + ei (1)

We recall that the standard assumption is that the ei are independent and identically
distributed as normal variables with constant variance σ2.
We also recall that this model implies a conditional mean model

E (POST ACH|VOUCHER) = β0 + β1VOUCHER (2)

and so β0 represents the mean of the control group (VOUCHER = 0), and β0 + β1 is the
mean of the experimental group (VOUCHER = 1).
The conditional variance model is

Var(POST ACH|VOUCHER) = σ2 (3)
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Revisiting the Voucher Experiment

Revisiting the Voucher Experiment

When the assumptions of the linear regression model hold, the estimate of the treatment
effect (β̂1) has a number of good properties:

1 It is unbiased, E (β̂1) = β1.
2 It is consistent. As n increases without bound, the probability that the estimate will be

within any non-zero error bound of the parameter approaches 1.
3 It is efficient, there is no other linear combination of the data that has a smaller variance.
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Cluster-Randomized Designs The Need for Sampling in Clusters

Cluster-Randomized Designs
The Need for Sampling in Clusters

In many if not most cases in education, a fully randomized design is difficult to implement.
When studying educational interventions, it is often necessary, for a variety of practical
reasons, to process students in intact classes. (See Murnane and Willett, Chapter 7, p.
107–110, for a brief discussion of this.)
In this case all students within a given class are exposed to similar conditions.
These within-class or within-cluster similarities will create violations of the assumptions of
the classic regression model if the clustering is ignored.

James H. Steiger (Vanderbilt University) Cluster Randomized (Multilevel) Designs 7 / 35



Cluster-Randomized Designs Dangers of Ignoring Clustering

Cluster-Randomized Designs
Dangers of Ignoring Clustering

When observations are not, in effect, independent, we can be misled by a classical
analysis.
And when observations occur in clusters, they are in general not independent.
How are we misled? One consequence is that we overrate the amount of information
contained in the data.
A classic example of this was in the audiology literature, in which some experimenters
used the ear as the unit of analysis.
Ears tend to be clustered within person. Most people have two ears. And because these
two ears are attached to the same body, their properties tend to be correlated.
Suppose a researcher gathered 20 individuals and measured their 40 ears on some
audiological characteristic, then tried to compute a confidence interval for the mean value
of that characteristic.
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Cluster-Randomized Designs Dangers of Ignoring Clustering

Cluster-Randomized Designs
Dangers of Ignoring Clustering

We know that the confidence interval is roughly the sample mean plus or minus two
(estimated) standard errors, or approximately

X̄ ± 2σ̂/
√

n (4)

The square root of n in the denominator of the above formula requires the assumption of
independence of errors.
Suppose ears were perfectly correlated within individual. Then the 40 ears would in effect
represent only 20 observations, and the classic formula would have to be corrected as

X̄ ± 2
σ̂√
n/2

(5)

In Psychology 310, we derive the formula required to compensate for the within-person
correlation between ears.
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Multi-Level Modeling

Multi-Level Modeling

Suppose we sample subjects in intact classes, and randomly assign the intact classes to
either an experimental or control condition.
Let’s introduce a model designed specifically to handle this situation.
Consider observation Yij representing the outcome score for the ith person within the jth
school.
Within-school, we can model each student’s performance as simply randomly varying
around the school’s mean.

Yij = β0j + εij (6)

The errors εij are assumed to be independently and identically distributed normally with
variance σ2e .
The within-school model is often referred to as a Level-1 model.
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Multi-Level Modeling

Multi-Level Modeling

Different schools have different means. These means vary around a grand average, γ00.
We can view variation in these means as arising from two sources:

1 A non-random change due to the treatment effect
2 A random component (representing other random sources of variation between schools).

We can write this Level-2 model as

β0j = γ00 + γ01Tj + u0j (7)

where the u0j are normally distributed random variables with mean 0 and variance σ2u.
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Multi-Level Modeling

Multi-Level Modeling

We can combine the Level-1 and Level-2 models to produce a composite model,

Yij = γ00 + γ01Tj + (eij + u0j) (8)

= γ00 + γ01Tj + e∗ij (9)

The second version of the equation looks just like the classic simple linear regression
model!
However, there is an important difference.
Under the stated assumptions, what is the covariance of the errors for any two individuals
in the same group?
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Multi-Level Modeling

Multi-Level Modeling

Since the errors have zero means, we may write, for the first two individuals in the jth
group,

Cov(e∗1j , e
∗
2j) = E (e∗1je

∗
2j)

= E ((e1j + u0j)(e2j + u0j))

= E (e1je2j + e1ju0j + u0je2j + u2
0j)

= E (e1je2j) + E (e1ju0j) + E (u0je2j) + E (u2
0j)

= Cov(e1je2j) + Cov(e1ju0j) + Cov(u0je2j) + Var(u0j)

= 0 + 0 + 0 + σ2u (10)

Any two individuals in the same group would have correlated errors.
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Multi-Level Modeling

Multi-Level Modeling

Note that we could also rewrite the combined model as

Yij = (γ00 + u0j) + γ01Tj + εij (11)

= γ∗00 + γ01Tj + εij (12)

In this form, the intercepts term is a random variable. Such a model is sometimes referred
to as a random intercepts model as a result.
Each group has its own intercept that is conceptualized as a random variable.
Because some effects are constants and others are random variables, this model is also
called a mixed model, or a Linear Mixed Effects(LME) model.
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Fitting the Multi-Level Model in R

Fitting the Multi-Level Model in R

To fit a LME model in R, we need to first write the model in composite form.
Then, we use the lmer function from the lme4 library, and we employ a modified syntax,
in which the random effects are presented with parentheses and conditionalized on their
grouping variables.
For example, consider the model Yij = γ00 + γ01Tj + (eij + u0j). It is coded as

fit <- lmer(Y ~ 1 + T +(1|School))

There is a random intercept component that varies conditionally with school, and note
how this is indicated within parentheses.
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Multilevel Modeling of an SFA Intervention

Multilevel Modeling of an SFA Intervention

The School For All (SFA) program is discussed on page 108 of Murnane and Willett.
The SFA program was first introduced into public schools in Baltimore, Maryland, in 1987.
During the next two decades, its use spread rapidly.
Today more than 1,200 schools, most with economically disadvantaged student bodies,
use this school-wide approach to developing students’ reading skills.
Sparking the rapid early expansion of SFA were the findings of several dozen
non-experimental evaluations of the intervention conducted during the 1990s, which
showed that the reading skills of children in schools that adopted SFA were better than
those of children in “comparison” schools that implemented other reading curricula.
However, these were not randomized experiments. Instead, the researchers who
conducted the evaluations sought out and selected non-randomly several “comparison”
schools that they believed served student populations that were demographically similar
to those of the SFA schools and had a history of similarly low reading achievement.

James H. Steiger (Vanderbilt University) Cluster Randomized (Multilevel) Designs 16 / 35



Multilevel Modeling of an SFA Intervention

Multilevel Modeling of an SFA Intervention

A necessary condition for such evaluations to provide unbiased estimates of the causal
impact of SFA is that treatment and comparison groups must be equal in expectation on
all unobserved dimensions that are correlated with student reading outcomes, prior to
treatment.
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Multilevel Modeling of an SFA Intervention

Multilevel Modeling of an SFA Intervention

There are at least two reasons to question whether this condition was satisfied in the early
non-experimental evaluations of SFA.

1 Schools that adopted SFA were required to spend about $75,000 in the first year of program
implementation, $35,000 in the second year, and $25,000 in the third year, to pay for the
materials and training that the SFA Foundation provided. Schools that were able to obtain
agreement from stakeholders to devote such substantial resources to a single program may
have differed from other schools along other important dimensions, such as the quality of
their leadership

2 Before a school introduces SFA, the Success for All Foundation requires that four-fifths of
the faculty members in the school vote to adopt the school-wide intervention. A result of
this requirement may have been that schools that voted to adopt SFA possessed a greater
sense of common purpose, on average, than those that adopted more conventional curricular
approaches to teaching reading. This difference in commitment to improving children’s
reading skills could itself have influenced student outcomes positively even if the SFA
approach itself was no better than the alternatives.
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Multilevel Modeling of an SFA Intervention

Multilevel Modeling of an SFA Intervention

To help eliminate some of these issues, a cluster-randomized design was developed.
41 schools were randomly assigned, 21 to the experimental group and 20 to the control
group.
Murnane and Willett present a sample analysis of performance on a “Word- Attack test
(WATTACK).
The treatment variable is SFA.
There was also a covariate tested in the third, most complex model. This covariate is
SCHL_PPVT, i.e., the school-level average on the Peabody Picture Vocabulary Test.
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Multilevel Modeling of an SFA Intervention

Multilevel Modeling of an SFA Intervention

Here is the code for the 3 models.

> data <- read.csv("ch07.csv")

> attach(data)

> library(lme4)

> ## Base Model -- No Treatment Effect, Random Intercepts

> fit.0 <- lmer(wattack ~ 1 + (1|schid))

> ## Adds Treatment Effect for sfa

> fit.1 <- lmer(wattack ~ 1 + sfa +(1|schid))

> ## Adds sch_ppvt as a covariate

> fit.2 <- lmer(wattack ~ 1 + sfa + sch_ppvt +(1|schid))
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Multilevel Modeling of an SFA Intervention

Multilevel Modeling of an SFA Intervention

Let’s examine some output. In the base model, we find an intercept of 477.54, agreeing
precisely with the output in Murnane and Willett, page 114.
There is a minor discrepancy in the estimate of σ2u, the random effects intercept. The
textbook has it at 78.69, while R gives 79.13.
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Multilevel Modeling of an SFA Intervention

Multilevel Modeling of an SFA Intervention

> summary(fit.0)

Linear mixed model fit by REML ['lmerMod']
Formula: wattack ~ 1 + (1 | schid)

REML criterion at convergence: 20147.73

Random effects:

Groups Name Variance Std.Dev.

schid (Intercept) 79.13 8.896

Residual 314.19 17.725

Number of obs: 2334, groups: schid, 41

Fixed effects:

Estimate Std. Error t value

(Intercept) 477.535 1.451 329.1
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Multilevel Modeling of an SFA Intervention

Multilevel Modeling of an SFA Intervention

We add sfa, and the coefficient is not significant in the modified model.

> summary(fit.1)

Linear mixed model fit by REML ['lmerMod']
Formula: wattack ~ 1 + sfa + (1 | schid)

REML criterion at convergence: 20141.48

Random effects:

Groups Name Variance Std.Dev.

schid (Intercept) 75.68 8.70

Residual 314.23 17.73

Number of obs: 2334, groups: schid, 41

Fixed effects:

Estimate Std. Error t value

(Intercept) 475.302 2.035 233.62

sfa 4.366 2.844 1.54

Correlation of Fixed Effects:

(Intr)

sfa -0.715
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Multilevel Modeling of an SFA Intervention

Multilevel Modeling of an SFA Intervention

Moreover, use of the anova command for model comparison shows no significant
difference between the two models.

> anova(fit.0,fit.1)

Data:

Models:

fit.0: wattack ~ 1 + (1 | schid)

fit.1: wattack ~ 1 + sfa + (1 | schid)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

fit.0 3 20156 20174 -10075 20150

fit.1 4 20156 20179 -10074 20148 2.4029 1 0.1211
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Multilevel Modeling of an SFA Intervention

Multilevel Modeling of an SFA Intervention

The covariate sch_ppvt produces a significant improvement in model fit. The model
summary shows a significant coefficient:

> summary(fit.2)

Linear mixed model fit by REML ['lmerMod']
Formula: wattack ~ 1 + sfa + sch_ppvt + (1 | schid)

REML criterion at convergence: 20127.22

Random effects:

Groups Name Variance Std.Dev.

schid (Intercept) 49.33 7.024

Residual 314.18 17.725

Number of obs: 2334, groups: schid, 41

Fixed effects:

Estimate Std. Error t value

(Intercept) 419.8075 12.6427 33.21

sfa 3.5691 2.3555 1.52

sch_ppvt 0.6229 0.1408 4.43

Correlation of Fixed Effects:

(Intr) sfa

sfa -0.006

sch_ppvt -0.991 -0.089
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Multilevel Modeling of an SFA Intervention

Multilevel Modeling of an SFA Intervention

The model comparison shows a significant change:

> anova(fit.1,fit.2)

Data:

Models:

fit.1: wattack ~ 1 + sfa + (1 | schid)

fit.2: wattack ~ 1 + sfa + sch_ppvt + (1 | schid)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

fit.1 4 20156 20179 -10074 20148

fit.2 5 20141 20170 -10065 20131 17.173 1 3.412e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The Intraclass Correlation

The Intraclass Correlation

Was multilevel modeling worth the trouble?
A course in multilevel modeling will go into significant detail about how multilevel
modeling improves on other techniques sometimes used in its stead.
For example, one approach often used in the past is to compute within-group means on a
predictor X and a criterion Y for each of the k classes, then perform linear regression on
those means.
This can lead to the ecological fallacy, in which the results on the aggregated data are
assumed to apply to the data within each group.
As the graph on the next slide shows, this can be false.
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The Intraclass Correlation

The Intraclass Correlation

As the plot (generated by Kris Preacher, whose excellent course on Multilevel Modeling is
offered here at Vanderbilt on a consistent basis and is highly recommended) shows, within
the 4 groups, there is a positive regression slope.
However, if one were to plot the group means on the two variables, one would have 4
points with a negative slope.
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The Intraclass Correlation

The Intraclass Correlation

One way of characterizing the need for a multilevel approach to modeling is to compute
an intraclass correlation coefficient.
Consider again the model of Equation 6. Since both terms on the right are random
variables, and they are uncorrelated, it shows that the total variance of Y is the sum of
two components.
That is,

σ2y = σ2β + σ2e

= σ2u + σ2e (13)
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The Intraclass Correlation

The Intraclass Correlation

The proportion of variance accounted for by groups is

ρIC =
σ2u

σ2u + σ2e
(14)

This coefficient is zero if there is no between groups variation.
Let’s calculate an estimate of it from our R output.
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The Intraclass Correlation

The Intraclass Correlation

We simply substitute estimates of the quantities in the equation on the previous slide.

ρ̂IC =
σ̂2u

σ̂2u + σ̂2e
(15)

=
75.68

75.68 + 314.19
(16)

=
75.68

389.87
(17)

= 0.194 (18)
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The Intraclass Correlation

The Intraclass Correlation

Recall that the intraclass correlation actually is in the form of a squared correlation
coefficient.
We would not be too surprised, then to discover that methodologists tend to classify an
intraclass correlation of 0.01 as “small,” 0.09 as “medium”, and 0.25 as “large.”
Note that, when the intraclass correlation approaches 1, it means that variation between
schools dwarfs variation within schools. In that case, in effect, each school can be reduced
to a single data point, and nothing is lost by doing regression on the group means.
When the intraclass correlation is low, then multilevel modeling has much to offer.
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The Intraclass Correlation

The Intraclass Correlation

Power to detect effects is much greater when the intraclass correlation is low.
This is reflected in a couple of power charts from Murnane and Willett (p. 124).
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The Intraclass Correlation

124 Methods Matter
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     Figure 7.1    Anticipated relationship between statistical power of a cluster-randomized 
research design versus number of clusters (schools), for a small effect size (0.2), at three 
values of intraclass correlation (0, 0.05, and 0.1),   α  -level of 0.05, on a one-sided test. 
 Top panel : 50 children/school.  Bottom panel : 100 children/school.    
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The Intraclass Correlation

The Intraclass Correlation

A key lesson from the charts is that the number of clusters has a much greater influence
on power than the number of observed subjects per cluster.
A revealing equation (rearranged substantially from the form given in Murnane and
Willett), shows the sampling variance of γ̂ as

Var(γ̂10) = 4σ2e

(
1

nJ
+

1

J

[
ρ

1− ρ

])
(19)

When ρ is close to 0, the right term vanishes. When ρ is close to 1, the right term can
become very large.
With moderate values of ρ around 0.10, the right term can dominate the left, which
explains how the number of clusters can assume greater importance than the number of
subjects per cluster.
And, of course, σ2e dominates everything. Finding useful covariates can diminish σ2e and
greatly improve precision of estimation of your treatment effects.
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